Deep Recurrent Neural Networks for mapping winter vegetation quality coverage via multi-temporal SAR Sentinel-1
نویسندگان
چکیده
Mapping winter vegetation quality coverage is a challenge problem of remote sensing. This is due to the cloud coverage in winter period, leading to use radar rather than optical images. The objective of this paper is to provide a better understanding of the capabilities of radar Sentinel-1 and deep learning concerning about mapping winter vegetation quality coverage. The analysis presented in this paper is carried out on multi-temporal Sentinel-1 data over the site of La Rochelle, France, during the campaign in December 2016. This dataset were processed in order to produce an intensity radar data stack from October 2016 to February 2017. Two deep Recurrent Neural Network (RNN) based classifier methods were employed. We found that the results of RNNs clearly outperformed the classical machine learning approaches (Support Vector Machine and Random Forest). This study confirms that the time series radar Sentinel-1 and RNNs could be exploited for winter vegetation quality cover mapping.
منابع مشابه
Evaluation of Sentinel-1 Interferometric SAR Coherence efficiency for Land Cover Mapping
In this study, the capabilities of Interferometric Synthetic Aperture Radar (InSAR) time series data and machine learning have been evaluated for land cover mapping in Iran. In this way, a time series of Sentinel-1 SAR data (including 16 SLC images with approximately 24 days time interval) from 2018 to 2020 were used for a region of Ahvaz County located in Khuzestan province. Using InSAR proces...
متن کاملMulti-temporal Land Cover Classification with Long Short-term Memory Neural Networks
Land cover classification (LCC) is a central and wide field of research in earth observation and has already put forth a variety of classification techniques. Many approaches are based on classification techniques considering observation at certain points in time. However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus ...
متن کاملvegetation change detection using multi-temporal remotly sensed data during recent three decades by artificial intelligence technique (Case study: protected area of Bashgol)
Quantitative and qualitative information of vegetation and its changes in duration of time as a basic foundation of determination of habitat quality, priority of protected area and also determination of price of ecosystem services in order to optimum management of natural resources and sustainable development is a very important technical point. In other hand, researchers are interested in rem...
متن کاملA CNN-Based Fusion Method for Feature Extraction from Sentinel Data
Sensitivity to weather conditions, and specially to clouds, is a severe limiting factor 8 to the use of optical remote sensing for Earth monitoring applications. A possible alternative, 9 is to resort to weather-insensitive synthetic aperture radar (SAR) images. However, in many 10 real-world applications, critical decisions are made based on some informative spectral features, 11 such as water...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.03694 شماره
صفحات -
تاریخ انتشار 2017